Responses to medium-magnitude earthquakes are as significant as to catastrophic earthquakes, because medium-magnitude temblors occur as many as a dozen times more than catastrophic earthquakes – at least from the year 1900. In China, local governments are obligated to protect residents against earthquakes that have a magnitude of $M_{\text{Ss}} 6.0$. The ways in which local governments perform these obligations differ, however, due to obstacles such as inadequate disaster planning, a lack of public earthquake awareness, and a shortage of qualified emergency managers. When an earthquake hits, the hazards that residents are unaware of may arise concurrently, putting thousands of lives and millions of acres of property in danger. In short, the response capacity of local governments is crucial to an earthquake’s aftermath.

To enhance the capacity of local government response to earthquake emergencies, the National Earthquake Response Support Service (NERSS) of China started work on training programs years ago. With the cooperation with the Japan International Cooperation Agency (JICA) and Japanese scientists in the last five years, based on lessons learned from China’s historical earthquakes and disasters, the authors have created the prototype for an earthquake disaster management curriculum, which it has then been demonstrated and continuously improved. This paper reviews the prototype curriculum and its development methodology, presents demonstrative deliveries of the curriculum, and discusses training effectiveness and further improvements. Applying an international emergency management framework and related experience, focusing on local government capacity building, the demonstrative trainings have been proved to be beneficial to local government response activities and the latest amendment to earthquake preplanning in China. Future systematic tracking research of training effectiveness is proposed to keep curriculum updating and appropriate as times change.

Keywords: earthquake, emergency response, training program, capacity building, local governments

1. Introduction

1.1. Occurrence of More Minor Earthquakes

In the short 6 years since 2008, at least 99 earthquakes of a magnitude exceeding $M_{\text{Ss}} 5.0$ have hit mainland China. Statistics (Table 1) also show that in mainland China since 1900, the occurrence of earthquakes of $M_{\text{Ss}} 6.9$ or less magnitude is 20 times per year, while $M_{\text{Ss}} 7.0$ or greater earthquake occurs 3 times every four years. Minor earthquakes occur even more frequently.

1.2. Local Government Domination in Response to Minor Earthquakes

One of the principles of China’s National Earthquake Emergency Plan is its territory-based graded response to earthquakes. Depending on earthquake impact, response is divided into four levels. A level I response, i.e., the highest, means a national response that may require mobilizing resources from the whole country in relief efforts. A level II response is dominated by provincial governments, a level III response by city governments and a level IV response by county governments.

1.3. Training Program Needs for Earthquake Emergency Response Capacity Building by Local Governments

In earthquakes, disaster responders from local governments are required to gather and send information, make decisions, and coordinate activities with other sections, departments, and organizations, etc., as rapidly and appropriately as possible under extraordinary circumstances. Inadequate disaster planning, a lack of public earthquake awareness, and a shortage of qualified emergency managers help make the situation more difficult. When an earthquake hits, these hazards may all arise at the same time, endangering thousands of lives and millions of acres of property.
Table 1. Earthquake occurrence statistics for mainland China since 1900.

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Frequency (times per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_s 5.0-5.9$</td>
<td>16</td>
</tr>
<tr>
<td>$M_s 6.0-6.9$</td>
<td>4</td>
</tr>
<tr>
<td>$M_s 7.0-7.9$</td>
<td>0.667</td>
</tr>
<tr>
<td>Greater than $M_s 8.0$</td>
<td>0.083</td>
</tr>
</tbody>
</table>

The need by local governments for training in earthquake emergency response capacity building was identified by J. Zhang (2013) [7], but no such training programs have been reported. For effectively responding to frequent earthquakes requires that a training program be developed to enhance the response capacity of China’s local governments.

2. Methodology and Approach

In China, the earthquake administration system consists of three subsystems: surveillance and early warning, prevention, and disaster management, which are three cycles as shown in Fig. 1. The surveillance and early warning subsystem was first of the three subsystems to be established in 1966. The second subsystem, prevention subsystem is to mitigate or prevent structural damage from earthquakes. It was set up after the July 28, 1976, Tangshan earthquake. In 1988, a $M_s 7.6$ earthquake following by a $M_s 7.2$ aftershock killed 743 residents and injured 4,105 in Yunnan Province while displacing some 2 million. Recovery and reconstruction from the earthquake cost so much effort that may beyond local capacity. Assistance from national and provincial governments was highly expected. It was also the first time that international assistance for natural disaster was accepted by the Chinese government as presented by S. Chen et al. (1989) [1]. Later in 1989, earthquake disaster management became the third subsystem of earthquake administration system on the national level, including three phases of preparedness, response, and recovery.

Fig. 1. China’s earthquake administration system.

Fig. 2. Curriculum design model.
Based on the Chinese earthquake disaster management cycle concept model and supported by the China Earthquake Administration (CEA) and the Japan International Cooperation Agency (JICA), trainers from China’s National Earthquake Response Support Service (NERSS) have been working closely with Japanese scientists since May 2009 to develop a training system tailored for emergency managers in China.

2.1. Assessment of Training Needs

To develop a practical curriculum, NERSS has collaborated closely with local authorities, including those in Sichuan and Qinghai Provinces, Shanghai and three model provinces picked by the Joint Committee of the CEA-JICA project. Questionnaires and interviews (Table 2) are used to identify training needs and to generalize basic materials for courses developed later.

After training, issues and ideas of trainees employed by local authorities are shared among trainees, trainers, and Japanese professors, as reflected in post training reviews.

2.2. Learning Model for Curriculum Design

Learning is a process of imitation and emulation with the goal to acquire certain knowledge, skills, and attitudes. Bransford (2000) [4] states that “…to develop competence in an area of inquiry, students must not only have a deep foundation of factual knowledge and understand facts and ideas in the context of a conceptual framework, but also organize knowledge in ways that facilitate retrieval and application.” Hayashi (2009) [2] also defined a learning process that combines three elements of human resource development: learning, drilling, and exercising. From the specific aspect of training emergency responders, lectures, discussions, critical thinking and practice should be considered as having equal importance. Both lectures and exercises should be incorporated into a curriculum to provide trainees with sufficient opportunities to develop competence in earthquake disaster management.

To combine lectures and exercises in curriculum design effectively, a learning model such as that shown in Fig. 2 must be developed. Information collected during needs assessment is used both to understand the background of trainees and as a complete emergency response package experience filled with “implicit knowledge.” Using cluster analysis and timeline analysis techniques upon these basic materials helps make some knowledge easy to understand and interpret. This “explicit knowledge” is delivered and emphasized in lectures. Exercise scenarios are developed based on cases of earthquake response collected in needs assessment interviews. In this step, trainees may integrate explicit knowledge with their own
experience to acquire skills for applying them in simulated scenarios presented in tabletop exercises.

2.3. Curriculum Development Flow

From the aspect of curriculum development, the quality of all courses has been recognized as crucial and a plan-do-check-action (PDCA) methodology has thus been used to manage the entire process (Fig. 3). Specifically, “P” involves planning and designing curriculums and developing courses. “D” involves delivering lectures and conducting tabletop exercises. “C” involves testing just how much of the knowledge trainees master from that transferred in lectures, evaluating the skills that trainees have developed in training, gathering feedback from trainees, and analyzing the strengths and weaknesses of the training system. “A” involves compiling action plans for further improvement.

3. Results

3.1. Demonstrative Training

From March 2012 to April 2014, six training sessions have been demonstrated for trainees from Beijing, Yunnan Province, Jiangsu Province, Hebei Province, Dalian, and Shanghai. Demonstrative training is detailed in Table 3. During each training session, trainees were encouraged to share knowledge and experience from their daily work in lectures. In table-top exercises, they were divided based on affiliations into three groups to simulate response activities after a level II earthquake disaster strike.

Trainees mainly came from three different systems:

1. Earthquake Administration, which is responsible for earthquake disaster management policy making
2. Civil Affairs, which is in charge of the preparation, deployment and distribution of relief supplies related to the basic survival needs of victims, e.g., water, instant food, and tents, and in charge of treating remains of the deceased in each type of disaster
3. Local governments

Trainees are quite diverse from the aspect of disaster management experience. Distributions of gender, agencies served and years of service of trainees are shown in Fig. 4.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Beijing</td>
<td>Kunming</td>
<td>Nanjing</td>
<td>Shijiazhuang</td>
<td>Beijing</td>
<td>Beijing</td>
<td>Shanghai</td>
</tr>
<tr>
<td>Where Trainees are from</td>
<td>Hebei</td>
<td>Yunnan</td>
<td>Jiangsu</td>
<td>Hebei</td>
<td>Dalian, Beijing</td>
<td>Hebei, Jiangsu, Yunnan</td>
<td>Shanghai</td>
</tr>
<tr>
<td>Population of trainees</td>
<td>22</td>
<td>39</td>
<td>50</td>
<td>24</td>
<td>24</td>
<td>42</td>
<td>25</td>
</tr>
</tbody>
</table>

(a) Gender distribution

(b) Distribution of served agencies

(c) Distribution of years of service

Fig. 4. Statistics on trainees.
Development of NERSS Training Program for Earthquake Emergency Response Capacity Building of Local Governments

3.2. Confirmatory Evaluations

After each lecture in the demonstrative trainings, a confirmatory evaluation knowledge test was given to trainees. As an example, the results of each test in the demonstrative training in Kunming in May 2012 are shown in Fig. 5. Confirmatory evaluation results are negative skew distributions, which proved the high mastery of relative knowledge by trainees through demonstrative training.

3.3. Feedback from Trainees

Feedback from trainees was collected through 20-question questionnaires. These consisted of four factual questions, thirteen ordinal polytomous questions and three open-ended questions. All questionnaires have been recycled and results of feedback are shown in Table 4.

<table>
<thead>
<tr>
<th>No.</th>
<th>Feedback aspect</th>
<th>Average</th>
<th>Highest</th>
<th>Lowest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Curriculum concentrates on the theme of “earthquake disaster management” (Out of 100%)</td>
<td>93.6%</td>
<td>100%</td>
<td>80%</td>
</tr>
<tr>
<td>2</td>
<td>Curriculum practicality (out of 100%)</td>
<td>72.7%</td>
<td>100%</td>
<td>40%</td>
</tr>
<tr>
<td>3</td>
<td>Curriculum novelty (out of 5)</td>
<td>4.45</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Curriculum consistency (out of 5)</td>
<td>4.55</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Send-outs (out of 5)</td>
<td>4.6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Trainers’ skills (out of 5)</td>
<td>4.59</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Design of tabletop exercise, including scenarios setup, injections, etc. (Out of 5)</td>
<td>4.60</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Tabletop exercise add-values (out of 5)</td>
<td>4.67</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

4. Discussion

4.1. Customizing Curriculum to Local Needs Essential

Assessing local needs is very important in course selection and curriculum design. Pre-training assessment should cover both trainee opinion and local knowledge, including seismic background, economic and social development, emergency management systems and cases of earthquake response reflecting and specifically addressed in curriculums.

4.2. Scenario-Based Teaching Enhancing Training Experience

Earthquake response training belongs to the science of management to which case studies are vital. Lectures should combine interpretation with best practice to precisely and vividly deliver ideas. And in Exercises, time pressure and visual and auditory information on disaster scenarios should stimulate trainees to release their own potential to deal with crisis. Direct evidence obtained in demonstrative training shows that trainees value the add-value of tabletop exercises of 4.67 out of 5, which is the highest evaluation of all items.

4.3. Flow of Knowledge as Training Program Core

This study has developed a learning model for curriculum design, which promotes learning systematically, effectively and efficiently. Tools including timeline analysis, cluster analysis, scenario reproduction are found useful in extracting knowledge from experience and in testing knowledge. The flow of knowledge conducted in lectures and exercises throughout the learning process is the core of training program and contributes to its consistency.
5. Conclusions

Feedback from demonstrative training is generally good. The learning model, i.e., “lecture, drilling, and exercising” has been validated. Further work should next be done in eliminating the outer effects and then revealing more significant factors that function on training effects. Applying an international emergency management framework and experience and focusing on local government capacity building, demonstrative training has proved to be beneficial in local governments' response activities and the latest amendment to earthquake preplanning in China. Future systematic tracking research on training effectiveness is proposed to keep curriculums updated and appropriate as times change.

Acknowledgements

This research was supported by Strategic Japanese-Chinese Cooperative Program on “Earthquake Disaster Mitigation” No.2012DFG20510.

References:

Name:
Junyan Lai
Affiliation:
Senior Engineer, National Earthquake Response Support Service, China Earthquake Administration
Address:
1, Yuquan West Street, Beijing 100049, China

Name:
Yuan Zhang
Affiliation:
Engineer, National Earthquake Response Support Service, China Earthquake Administration
Address:
1, Yuquan West Street, Beijing 100049, China

Name:
Lu Ding
Affiliation:
Engineer, National Earthquake Response Support Service, China Earthquake Administration
Address:
1, Yuquan West Street, ShJingShan District, Beijing

Name:
Weimin Wu
Affiliation:
Director General, National Earthquake Response Support Service, China Earthquake Administration
Address:
1, Yuquan West Street, Beijing 100049, China

Selected Publications:

- “Research on logistics support management system in earthquake emergency and rescue domain: Chinese international rescue team (CISAR) as an example,” Master Degree Dissertation.
Name: Haruo Hayashi
Affiliation: Professor, Ph.D. (UCLA), Research Center for Disaster Reduction System (DRS), Disaster Prevention Research Institute (DPRI), Kyoto University
Address: Gokasho, Uji-shi, Kyoto 611-0011, Japan
Brief Career: 1983-1988 Assistant Professor and Associate Professor, Faculty of Humanities, Hirosaki University
1988-1994 Associate Professor, Faculty of Integrated Arts and Sciences, Hiroshima University
1994-1996 Associate Professor, Disaster Prevention Research Institute, Kyoto University
1996-present Professor, Disaster Prevention Research Institute, Kyoto University
Selected Publications:

Name: Reo Kimura
Affiliation: Associate Professor, Ph.D., Graduate School of Human Science and Environment, University of Hyogo
Address: 1-1-12, Shinzeikie-honcho, Himeji, Hyogo 670-0092, Japan
Brief Career: 2003-2009 Assistant Professor, Graduate School of Environmental Studies, Nagoya University
2009-2011 Associate Professor, Graduate School of Environmental and Disaster Research, Fuji Tokoha University
Selected Publications:
• "Implementation and operation of a cloud-based participatory damage recognition system to obtain a common operational picture that supports a quick disaster response," Int. Journal for Infonomics (IJH), Special Issue Vol.1, Issue 1, pp. 834-840, 2013.

Name: Masafumi Hosokawa
Affiliation: Executive Researcher, Dr. Eng., National Research Institute of Fire and Disaster
Address: 4-34-1-1-110, Jindaiji-higashi-cho, Choufu-shi, Tokyo 182-0012, Japan
Brief Career: 1991 - Joined National Research Institute of Fire and Disaster
2003-2004 Assistant Division Chief of Fire and Disaster Management Agency
Selected Publications:

Name: Yukihisa Sakurada
Affiliation: Researcher, Research Center for Disaster Reduction Systems, Disaster Prevention Research Institute, Kyoto University
Address: Gokasho, Uji-shi, Kyoto 611-0011, Japan
2004-2010 Vice President of Japan International Cooperation System
2010-2013 Chief Adviser of Japan-China Cooperation Project for Earthquake Response Support Capacity, JICA

Academic Societies & Scientific Organizations:
• Institute of Electronics, Information and Communication Engineer (IEICE)
• Remote Sensing Society of Japan (RSSJ)